Пироговский Университет — это ведущий научно-образовательный центр в области медицины, и лучший медицинский университет, который готовит высококвалифицированных специалистов в различных областях здравоохранения.
В нашем университете работают талантливые и увлечённые своим делом преподаватели, которые готовы преодолевать любые трудности ради блага пациентов. В 2024 году университет стал участником программы «Приоритет 2030», представив три стратегических проекта: «Иммуномедицина», «Генотерапия» и «Нейротрофика». Эти направления не только соответствуют мировым тенденциям, но и формируют их.
Уже сейчас в университете создаются инновационные технологии и разрабатываются уникальные препараты для лечения редких и сложных заболеваний. Также разрабатываются персонализированные генотерапевтические методы лечения.
— Благодаря научным достижениям, стратегическим инициативам и высокому уровню подготовки студентов Пироговский Университет уверенно укрепляет свои позиции в российских и международных рейтингах, формирует стандарты медицины будущего и воспитывает поколения врачей новой формации — прогрессивных, компетентных и социально ответственных — отметил ректор Пироговского Университета Сергей Анатольевич Лукьянов.
— Пироговский Университет и другие медицинские университеты выступают в качестве источника технологий и знаний, которые меняют подход к медицине и применяются в клинике, у постели больного. Представления о медицинской помощи меняются на глазах, — говорит Георгий Гивиевич Надарейшвили, первый проректор — проректор по стратегическому развитию Пироговского Университета.
— Важно осознанно подходить к выбору профессии, особенно в медицине. Необходимо быть готовым к постоянному обучению, взаимодействию с людьми и работе над собой. Для поддержания энергичности и стрессоустойчивости студентов университеты предлагают внеучебные активности: спортивные, творческие и научные кружки, а также общественные организации, — подчёркивает проректор по молодёжной политике Пироговского Университета Владислава Сергеевна Белякова.
Проректор по научной работе Пироговского Университета Денис Владимирович Ребриков разобрал все мифы вокруг теоретического воскрешения вымерших видов.
Волки из прошлого или дизайнерские питомцы?
Недавно в СМИ появилось сообщение о якобы "воскрешении" вымершего вида волков. Генетически модифицированные животные, по задумке разработчиков, должны напоминать древнего хищника, исчезнувшего 15 тысяч лет назад. Однако, как подчеркивают учёные, это не настоящая реинкарнация, а лишь стилизация — с использованием современных волков и внесением изменений в их ДНК.
С научной точки зрения речь идёт не о воссоздании вида, а о формировании внешне схожего фенотипа. Были воспроизведены определённые признаки, заимствованные из изученного древнего генома. На деле же, это коммерческий проект, рассчитанный на шоу, экзотику и обогащение.
Можно ли по-настоящему воскресить вымерший вид?
Существует два подхода к "воскрешению": один — имитационный, как в случае с волками, второй — полноценное клонирование. Чтобы вернуть к жизни вид, необходимы живые клетки этого организма, и чем раньше он вымер, тем труднее (или вовсе невозможно) такие клетки найти.
Однако если клетки сохранились, например, в зоопарках или банках биоматериалов, можно применить технологии клонирования. Пример — клон вымершего подвида козла, полученного путём переноса ядра из соматической клетки в ооцит и последующего вынашивания суррогатной матерью. Именно так в своё время была создана овечка Долли — первое клонированное млекопитающее.
Генетическое редактирование: риски и выгоды
Современные технологии, такие как CRISPR-Cas, позволяют вносить прицельные изменения в ДНК. Эти методы уже применяются десятки лет в сельском хозяйстве, животноводстве, а теперь и в биомедицинских исследованиях. Модифицированные коровы, козы, светящиеся рыбки — всё это примеры массового использования генной инженерии.
Зачем это делают? Причины вполне прагматичны: увеличить молочную продуктивность у коров, улучшить состав молока, повысить мясную продуктивность, сделать животных устойчивыми к болезням. В растениях цели те же — повысить урожайность, сделать культуры устойчивыми к вредителям и засухе, снизить потребность в пестицидах и гербицидах. Такие улучшения позволяют кормить больше людей, снижать затраты на химикаты и минимизировать экологический ущерб.
Тем не менее, когда речь идёт о человеке, требования к безопасности в разы выше. На данный момент редактирование генома человека разрешено только на этапе эмбриональных исследований — без имплантации. Полноценное применение таких технологий в клинике пока запрещено и требует долгих лет испытаний.
Как изменяли гены до CRISPR?
Интересно, что люди модифицировали гены задолго до появления высокоточных инструментов вроде CRISPR. Сначала это делалось с помощью обычной селекции. Например, древние земледельцы просто выбирали колоски пшеницы с наибольшим количеством зёрен и сеяли их. Так, поколение за поколением, человек искусственно формировал более продуктивные сорта.
Позже пришло понимание, что растения и животных можно скрещивать. Известный пример — мул, гибрид лошади и осла, отличающийся выносливостью и силой. Затем в ход пошёл мутагенез — учёные начали облучать организмы радиацией или химическими агентами, вызывая случайные мутации. Этот метод был крайне неточным, но он тоже стал основой для отбора нужных свойств.
И только в последние десятилетия на смену этим подходам «грубой силы» пришли точные технологии редактирования генома. Теперь мы знаем, что меняем, где именно и зачем. Это делает современные генетические вмешательства не только эффективнее, но и значительно безопаснее.
Пример из практики: наследственная тугоухость
Один из немногих случаев, когда редактирование генома может быть оправдано, — это ситуация, при которой семейная пара генетически не способна родить здорового ребёнка, — когда у обоих потенциальных родителей все четыре аллеля поломаны. Такая семейная картина встречается лишь для одного заболевания — наследственной тугоухости. В этом случае современные технологии позволяют исправить мутацию на стадии самой первой клетки будущего ребёнка (зиготы) и ребёнок будет слышать.
При этом важно отметить, что большинство генетически глухих детей рождается у слышащих родителей (из-за совпадения носительства мутаций риск рождения больного ребёнка - 25%). В этом случае паре необходимо обратиться в клинику ЭКО для применения предимплантационной диагностики. Пироговский университет совместно с Центром оториноларингологии ФМБА России и Национальным центром акушерства, гинекологии и перинатологии им. В. И. Кулакова ведёт проект по ЭКО для семейных пар, у которых совпадает мутация в гене GJB2. За три года работы у таких пар родилось десять здоровых детей. Это легально и эффективно, но не связано с редактированием генома.
Стоит ли бояться "генетических монстров"?
Опасения о создании «монстров» или «новых хищников» чаще питаются поп-культурой, чем реальностью. Современная генная инженерия куда безопаснее методов 50-летней давности, когда растения и животные подвергались радиационному мутагенезу, вызывавшему случайные и непредсказуемые изменения.
Более того, доказано, что генно-модифицированные культуры нередко безопаснее «натуральных», поскольку требуют меньше агрессивной химии при выращивании. Например, картофель, устойчивый к вредителям благодаря встроенной защите, не нуждается в токсичных инсектицидах.
Заключение
Редактирование ДНК и клонирование — мощные инструменты современной биологии. Они не только расширяют границы наших возможностей, но и требуют чёткого разделения: где — фундаментальная наука и лечение, а где — маркетинг и шоу. И если с животными и растениями технология давно обкатана, то с человеком — всё ещё впереди. А значит, пока «волки из прошлого» остаются лишь красивой иллюзией с технологическим подтекстом, но не научным прорывом.
Больше новостей лучшего медицинского университета читайте в телеграм-канале: https://t.me/daily_2med
Комментариев пока нет.